Continuum limits of random matrices and the Brownian carousel
نویسندگان
چکیده
We show that at any location away from the spectral edge, the eigenvalues of the Gaussian unitary ensemble and its general β siblings converge to Sineβ , a translation invariant point process. This process has a geometric description in term of the Brownian carousel, a deterministic function of Brownian motion in the hyperbolic plane. The Brownian carousel, a description of the a continuum limit of randommatrices, provides a convenient way to analyze the limiting point processes. We show that the gap probability of Sineβ is continuous in the gap size and β, and compute its asymptotics for large gaps. Moreover, the stochastic differential equation version of the Brownian carousel exhibits a phase transition at β = 2.
منابع مشابه
Invited Talks
Bénédicte Haas, University of Paris-Dauphine, France Limits of Non-increasing Markov Chains and Applications to Random Trees and Coalescents Consider a non-increasing Markov chain with values in the set of non-negative integers, starting from a large integer !. We describe its scaling limit as ! → ∞, under the assumption that the large jump events are rare and happen at rates that behave like a...
متن کاملInteracting Brownian motions in infinite dimensions with logarithmic interaction potentials
We investigate the construction of diffusions consisting of infinitely numerous Brownian particles moving in R and interacting via logarithmic functions (2D Coulomb potentials). These potentials are really strong and long range in nature. The associated equilibrium states are no longer Gibbs measures. We present general results for the construction of such diffusions and, as applications thereo...
متن کاملInvariance principles for spatial multitype Galton-Watson trees
We prove that critical multitype Galton-Watson trees converge after rescaling to the Brownian continuum random tree, under the hypothesis that the offspring distribution has finite covariance matrices. Our study relies on an ancestral decomposition for marked multitype trees. We then couple the genealogical structure with a spatial motion, whose step distribution may depend on the structure of ...
متن کاملDeterminantal correlations of Brownian paths in the plane with nonintersection condition on their loop-erased parts.
As an image of the many-to-one map of loop-erasing operation L of random walks, a self-avoiding walk (SAW) is obtained. The loop-erased random walk (LERW) model is the statistical ensemble of SAWs such that the weight of each SAW ζ is given by the total weight of all random walks π that are inverse images of ζ, {π:L(π)=ζ}. We regard the Brownian paths as the continuum limits of random walks and...
متن کاملScaling limits of Markov branching trees, with applications to Galton-Watson and random unordered trees
We consider a family of random trees satisfying a Markov branching property. Roughly, this property says that the subtrees above some given height are independent with a law that depends only on their total size, the latter being either the number of leaves or vertices. Such families are parameterized by sequences of distributions on partitions of the integers, that determine how the size of a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008